Abstract

Abstract This article addresses the causes of the large-scale tropical sea level pressure (SLP) changes during climate change. The analysis presented here is based on model simulations, observed trends, and the seasonal cycle. In all three cases the regional changes of tropospheric temperature (Ttropos) and SLP are strongly related to each other [considerably more strongly than (sea) surface temperature and SLP]. This relationship basically follows the Bjerknes circulation theorem, with relatively low regional SLP where there is relatively high Ttropos and vice versa. A simple physical model suggests a tropical SLP response to horizontally inhomogeneous warming in the tropical Ttropos, with a sensitivity coefficient of about −1.7 hPa K−1. This relationship explains a large fraction of observed and predicted changes in the tropical SLP. It is shown that in climate change model simulations the tropospheric land–sea warming contrast is the most significant structure in the regional Ttropos changes relative to the tropical mean changes. Since the land–sea warming contrast exists in the absence of any atmospheric circulation changes, it can be argued that the large-scale response of tropical SLP changes is to first order a response to the tropical land–sea warming contrast. Furthermore, as the land–sea warming contrast is mostly moisture dependent, the models predict a stronger warming and decreasing SLP in the drier regions from South America to Africa and a weaker warming and increasing SLP over the wetter Indo-Pacific warm pool region. This suggests an increase in the potential for deep convection conditions over the Atlantic sector and a decrease over the Indo-Pacific warm pool region in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call