Abstract

Based on reanalysis data, satellite ozone concentration observations, and a Lagrangian trajectory simulation, a Rossby wave breaking (RWB) event and its effect on stratosphere–troposphere exchange (STE) over the Tibetan Plateau in mid-March 2006 were investigated. Results showed that the increased eddy heat flux from the subtropical westerly jet magnified the amplitude of the Rossby wave, which contributed to the occurrence of the cyclonic RWB event. The quasi-horizontal cyclonic motion of the isentropic potential vorticity in the RWB cut the tropical tropospheric air mass into the extratropical stratosphere, completing the stratosphere–troposphere mass exchange. Meanwhile, the tropopause folding zone extended polewards by 10° of latitude and the tropospheric air mass escaped from the tropical tropopause layer into the extratropical stratosphere through the tropopause folding zone. The particles in the troposphere-to-stratosphere transport (TST) pathway migrated both eastwards and polewards in the horizontal direction, and shifted upwards in the vertical direction. Eventually, the mass of the TST particles reached about 3.8 × 1014 kg, accounting for 42.2% of the particles near the tropopause in the RWB event. The rest of the particles remained in the troposphere, where they moved eastwards rapidly along the westerly jet and slid down in the downstream upper frontal zone.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call