Abstract

Tiger sharks were sampled off the western (Ningaloo Reef, Shark Bay) and eastern (the Great Barrier Reef; GBR, Queensland and New South Wales; NSW) coastlines of Australia. Multiple tissues were collected from each shark to investigate the effects of location, size and sex of sharks on δ13C and δ15N stable isotopes among these locations. Isotopic composition of sharks sampled in reef and seagrass habitats (Shark Bay, GBR) reflected seagrass-based food-webs, whereas at Ningaloo Reef analysis revealed a dietary transition between pelagic and seagrass food-webs. In temperate habitats off southern Queensland and NSW coasts, shark diets relied on pelagic food-webs. Tiger sharks occupied roles at the top of food-webs at Shark Bay and on the GBR, but not at Ningaloo Reef or off the coast of NSW. Composition of δ13C in tissues was influenced by body size and sex of sharks, in addition to residency and diet stability. This variability in stable isotopic composition of tissues is likely to be a result of adaptive foraging strategies that allow these sharks to exploit multiple shelf and offshore habitats. The trophic role of tiger sharks is therefore both context- and habitat-dependent, consistent with a generalist, opportunistic diet at the population level.

Highlights

  • Marine megafauna such as large sharks, cetaceans, billfishes and tunas typically occupy upper trophic levels in marine food webs

  • The dataset summed to 364 samples of multiple tissues from 273 sharks collected at Ningaloo Reef, Shark Bay, Great Barrier Reef (GBR), Queensland (QSCP) and New South Wales (NSW) (Table 1, Fig. 1)

  • Sharks sampled in the enclosed seagrass habitats of Shark Bay on the west coast and the large, shallow lagoon of the GBR showed the strongest evidence of long-term diets based in coastal-associated food-webs originating with seagrass

Read more

Summary

Introduction

Marine megafauna such as large sharks, cetaceans, billfishes and tunas typically occupy upper trophic levels in marine food webs. Sampling over broad spatial and temporal scales and multiple habitats could allow incorporation of stable isotope data into studies of the spatial ecology (movement patterns, space use and habitat preferences) of these predators, and provide novel insights into both the motivations behind patterns (prey preference and foraging locations) and the role of these sharks within the various marine habitats that their movements encompass. This study sought evidence for the influence of biological (size, sex) and spatial (latitude, location) factors that could influence the stable isotopic composition of tiger sharks and how that relationship changed at both short (days to weeks) and long (months to years) time scales by analysing tissues with different turnover rates

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call