Abstract

An important testable prediction of dynamical instability models for the early evolution of the solar system is that Jupiter Trojans share a source population with the Kuiper Belt. Concrete evidence of this prediction remains elusive, as Kuiper Belt objects (KBOs) and Jupiter Trojans appear to have different surface compositions. We address the long-standing question of Trojan origin by finding a dynamical subpopulation in the Kuiper Belt with Trojan-like colors. Combining existing photometric data with our own surveys on Keck I and Palomar P200, we find that the low-perihelion (q < 30 au, a > 30 au) component of the Kuiper Belt has colors that bifurcate similarly to the Jupiter Trojans, unlike Centaurs (a < 30 au), which have redder, Kuiper Belt-like colors. To connect the Jupiter Trojans to the Kuiper Belt, we test whether the distinct Trojan-like colors of low-perihelion KBOs result from surface processing or are sourced from a specific population in the Kuiper Belt. By simulating the evolution of the Canada–France Ecliptic Plane Survey synthetic population of KBOs for four billion years, we find that differences in heating timescales cannot result in a significant depletion of very red low-perihelion KBOs as compared to the Centaurs. We find that the neutrally colored scattered disk objects (e > 0.6 KBOs) contribute more to the low-perihelion KBO population than to Centaurs, resulting in their different colors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.