Abstract

The tsRNAs (tRNA-derived small RNAs) are new types of small noncoding RNAs derived from tRNAs. Gliomas are well-known malignant brain tumors. The study focused on tsRNA characterizations within gliomas. Datasets processing, bioinformatics analyses, and visualizations were performed with the packages of Python and R. Cell proliferations were demonstrated via CCK8 assays and colony formation assays, and in vivo xenograft experiments. Dual-luciferase reporter assay was performed to confirm the binding of tsRNA with its targets. Via using bioinformatics approaches, the hundreds of tsRNAs with available expression abundance were identified in gliomas dataset, most of them derived from D-loop or T-loop fragments of tRNAs. Among tsRNAs derived from tRNA-Cys-GCA, tRFdb-3003a and tRFdb-3003b (tRFdb-3003a/b) were remarkably down-regulated in gliomas. The survival outcome of gliomas patients with low tRFdb-3003a/b expressions was notably worse than that of high-expression patients. In glioma cells, tRFdb-3003a could suppress cells proliferation and colony formation ability. In vivo, tRFdb-3003a suppressed the tumor growth of xenograft gliomas. Enrichment analyses displayed the tRFdb-3003a-related mRNAs were enriched in the specific GO terms, spliceosome and autophagy pathways, and three GSEA molecular signatures. Mechanically, 3'-UTR regions of VAV2 mRNA were predicted to contain the binding positions of tRFdb-3003a/b, tRFdb-3003a and tRFdb-3003b was effective to reduce the relative luciferase activity of cells with VAV2 wild-type reporter. Overexpression of tRFdb-3003a/b could down-regulated the expression levels of VAV2 protein and mRNA in glioma cells. The tRNA-Cys-GCA derived tRFdb-3003a and tRFdb-3003b might act as key player in tumor progressions of gliomas; tRFdb-3003a/b might directly bind to VAV2 and regulate VAV2 expressions in gliomas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call