Abstract
By taking account of the functions of shear stress couples acting on the dodecahedron element, a triple-shear unified yield criterion for materials is proposed to interpret a series of criteria, especially the commonly used criteria such as the Tresca’s yield criterion, the Von Mises’s yield criterion and the Mohr-Coulomb’s failure criterion through changing its contributive coefficient of the intermediate principal shear stress couples b and the tensile to compressive yield limit ratio α . In spite of that, problems of the limit inner pressures for thin and thick-wall cylinders are analyzed and the new unified solutions are deduced under the hypothesis of the perfectly elasto-plastic materials. The classical solutions based on the Tresca’s yied criterion, the Von Mises’s yield criterion and the Mohr-Coulomb’s failure yield criterion are only the special cases of the new unified solutions. Detailed analyses show that both the contributive coefficient of the intermediate principal shear stress couples b and the tensile to compressive yield limit ratio α have influences on the limit inner pressures for thin and thick-wall cylinders
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.