Abstract
A line meeting a family of pairwise disjoint convex sets induces two permutations of the sets. This pair of permutations is called a geometric permutation. We characterize the possible triples of geometric permutations for a family of disjoint translates in the plane. Together with earlier studies of geometric permutations this provides a complete characterization of realizable geometric permutations for disjoint translates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.