Abstract

Context. The triple system HD 150136 is composed of an O3 V((f*))–O3.5 V((f+)) primary, of an O5.5–6 V((f)) secondary, and of a more distant O6.5–7 V((f)) tertiary. The latter component went through periastron in 2015–2016, an event that will not occur again within the next eight years. Aims. We aim to analyse the tertiary periastron passage to determine the orbital properties of the outer system, to constrain its inclination and its eccentricity, and to determine the actual masses of the three components of the system. Methods. We conducted an intensive spectroscopic monitoring of the periastron passage of the tertiary component and combined the outcoming data with new interferometric measurements. This allows us to derive the orbital solution of the outer orbit in three-dimensional space. We also obtained the light curve of the system to further constrain the inclination of the inner binary. Results. We determine an orbital period of 8.61 ± 0.02 years, an eccentricity of 0.682 ± 0.002, and an inclination of 106.18 ± 0.14° for the outer orbit. The actual masses of the inner system and of the tertiary object are 72.32−8.49+8.45 M⊙ and 15.54−4.97+4.96 M⊙, respectively. From the mass of the inner system and accounting for the known mass ratio between the primary and the secondary, we determine actual masses of 42.81 M⊙ and 29.51 M⊙ for the primary and the secondary components, respectively. We infer, from the different mass ratios and the inclination of the outer orbit, an inclination of 62.4° for the inner system. This value is confirmed by photometry. Grazing eclipses and ellipsoidal variations are detected in the light curve of HD 150136. We also compute the distance of the system to 1.096 ± 0.274 kpc. Conclusions. By combining spectroscopy, interferometry, and photometry, HD 150136 offers us a unique chance to compare theory and observations. The masses estimated through our analysis are smaller than those constrained by evolutionary models. The formation of this triple system suggests similar ages for the three components within the errorbars. Finally, we show that Lidov–Kozai cycles have no effect on the evolution of the inner binary, which suggests that the latter will experience mass transfer leading to a merger of the two stars.

Highlights

  • Massive stars are key objects in the galaxies

  • The actual masses of the inner system and of the tertiary object are From the mass of the inner system and accounting for the known mass ratio between t7h2e.3p2r+−im88..44a59rMy anadndth1e5s.5ec4o+−n44..d9967arMy

  • Grazing eclipses and ellipsoidal variations are detected in the light curve of HD 150136

Read more

Summary

Methods

We conducted an intensive spectroscopic monitoring of the periastron passage of the tertiary component and combined the outcoming data with new interferometric measurements. This allows us to derive the orbital solution of the outer orbit in threedimensional space. We obtained the light curve of the system to further constrain the inclination of the inner binary

Results
Conclusions
Introduction
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.