Abstract
Grapevine rupestris stem pitting-associated virus (GRSPaV) is a member of the genus Foveavirus in the family Betaflexiviridae. The genome of GRSPaV encodes five proteins, among which are three movement proteins designated the triple gene block (TGB) proteins. The TGB proteins of GRSPaV are highly similar to their counterparts in Potato virus X (PVX), as reflected in size, modular structure, conservation of critical amino acid sequence motifs, as well as similar cellular localization. Based on these similarities, we predicted that the TGB proteins of these two viruses would be interchangeable. To test this hypothesis, we replaced the entire or partial sequence of PVX TGB with the corresponding regions from GRSPaV, creating chimeric viruses that contain the PVX backbone and different sequences from GRSPaV TGB. These chimeric constructs were delivered into plants of Nicotiana benthamiana through agro-infiltration to test whether they were capable of cell-to-cell and systemic movement. To our surprise, viruses derived from pPVX.GFP(CH3) bearing GRSPaV TGB in place of PVX TGB lost the ability to move either cell-to-cell or systemically. Interestingly, another chimeric virus resulting from pPVX.GFP(HY2) containing four TGB genes (TGB1 from PVX and TGB1-3 from GRSPaV), exhibited limited cell-to-cell, but not systemic, movement. Our data question the notion that analogous movement proteins encoded by even distantly related viruses are functionally interchangeable and can be replaced by each other. These data suggest that other factors, besides the TGB proteins, may be required for successful intercellular and/or systemic movement of progeny viruses. This is the first experimental demonstration that the GRSPaV TGB function as movement proteins in the context of a chimeric virus and that four TGB genes were required to support the intercellular movement of the chimeric virus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.