Abstract

Psoriasis is a chronic inflammatory disease appearing as scaly erythematous cutaneous lesions, which are characterized by parakeratosis and acanthosis as well as the infiltration of immune cells, such as T helper-1 and T helper-17 cells. Here, we demonstrated that KdPT, a tripeptide structurally related to the C-terminal amino acids of alpha-melanocyte-stimulating hormone, which was previously shown to exhibit anti-inflammatory effects in intestinal inflammation, ameliorated ongoing disease in the mouse model of imiquimod-induced psoriasis-like skin inflammation and in the small xenotransplant mouse model of psoriasis. We could show that systemic KdPT treatment significantly reduced hyperkeratosis and acanthosis in murine as well as human skin. Moreover, KdPT upregulated Foxp3 in CD4+ T cells from mice and from peripheral blood of individuals with psoriasis and decreased the expression of type 1 inflammatory cytokines, indicating that the beneficial effect of KdPT was, at least in part, mediated by the induction of functional regulatory T cells that suppressed the activation of pathogenic CD4+ IFN-γ+ and CD4+ IL-17+ T cells. Thus, these data might suggest KdPT as a potential novel therapeutic alternative for the treatment of psoriasis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call