Abstract
This study was conducted to evaluate the suitability of using residual plant fibers from agricultural waste streams as reinforcement in thermoplastic composites. Three groups of plant fibers evaluated included cotton burrs, sticks and linters from cotton gin waste (CGW), guayule whole plant, and guayule bagasse. The plant fibers were characterized for physical (bulk density and particle size distribution) and chemical properties (ash, lignin and cellulose contents). A laboratory experiment was designed with five fiber filler treatments, namely control (oak wood fiber as the filler – OWF), cotton burr and sticks (CBS), CBS with 2% (by weight) second cut linters (CBL), CBS with 30% (by weight) guayule whole plant (CGP), and CBS with 30% (by weight) guayule bagasse (CGB). The composite samples were manufactured with 50% of fiber filler, 40% of virgin high-density polyethylene (HDPE), and 10% other additives by weight. The samples were extruded to approximately 32 × 7 mm cross-sectional profiles, and tested for physico-mechanical properties. The CBS and CBL had considerably lower bulk density than the other fibers. Cotton linters had the highest α-cellulose (66.6%), and lowest hemicellulose (15.8%) and lignin (10.5%) of all fibers tested. Guayule whole plant had the lowest α-cellulose and highest ash content. Both CBS and guayule bagasse contained α-cellulose comparable to OWF, but slightly lower hemicellulose. Evaluation of composite samples made from the five fiber treatments indicated that fibers from cotton gin byproducts and guayule byproducts reduced the specific gravity of the composites significantly. However, the CBS and CBL samples exhibited high water absorption and thickness swelling, but the addition of guayule bagasse reduced both properties to similar levels as the wood fiber. The CGP exhibited significantly lower coefficient of thermal expansion. Composite samples with the five different fiber fillers showed similar hardness and nail holding capacity, yet oak fibers imparted superior strength and modulus under flexure and compression with the exception of the compressive modulus of CGB composites. In general, both cotton ginning and guayule processing byproducts hold great potential as fiber fillers in thermoplastic composites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.