Abstract

In the present study, trigger mechanisms of the vapor explosion are experimentally investigated. The interfacial behavior between high temperature molten liquid and low temperature water are experimentally investigated by using a molten material droplet and external pressure pulse. As the results, it is indicated that spontaneous vapor explosion hardly occur in high temperature water near saturation temperature since vapor film is stable. The vapor explosion can occur even in high temperature water near saturation temperature in case that the external pressure pulse is applied to high temperature molten material. Vapor explosion can not occur when the interfacial temperature between the molten material and water is lower than the material melting temperature, even if the vapor film around the molten material is collapsed by the external pressure pulse. It is clarified that the impossibility of the trigger process for the vapor explosion can be judged by comparing the interfacial temperature and the molten material temperature. The results obtained in the present experiments are applied to the results of the large-scale experiments using uranium dioxide. The results indicate that the possibility of the vapor explosion of the uranium dioxide and water under the present LWR operational condition is extremely unlikely. It should be noted that the present criteria should be applicable in case that the melting temperature does not decrease by containing the metal component.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call