Abstract

Abstract The focus of this paper is on the tricriterion shortest path problem where two objective functions are of the bottleneck type, for example MinMax or MaxMin. The third objective function may be of the same kind or we may consider, for example, MinSum or MaxProd. Let p ( n ) be the complexity of a classical single objective algorithm responsible for this third function, where n is the number of nodes and m be the number of arcs of the graph. An O( m 2 p ( n )) algorithm is presented that can generate the minimal complete set of Pareto-optimal solutions. Finding the maximal complete set is also possible. Optimality proofs are given and extensions for several special cases are presented. Computational experience for a set of randomly generated problems is reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.