Abstract
Abstract In this paper we explore the approximation of the normal density function with the triangular density function, a density function that has extensive use in risk analysis. Such an approximation generates a simple piecewise-linear density function and a piecewise-quadratic distribution function that can be easily manipulated mathematically and that produces surprisingly accurate performance under many instances. This mathematical tractability proves useful when it enables closed-form solutions not otherwise possible, as with problems involving the embedded use of the normal density. For benchmarking purposes we compare the basic triangular approximation with two flared triangular distributions and with two simple uniform approximations; however, throughout the paper our focus is on using the triangular density to approximate the normal for reasons of parsimony. We also investigate the logical extensions of using a non-symmetric triangular density to approximate a lognormal density. Several issues associated with using a triangular density as a substitute for the normal and lognormal densities are discussed, and we explore the resulting numerical approximation errors for the normal case. Finally, we present several examples that highlight simple decision rules-of-thumb that the use of the approximation generates. Such rules-of-thumb, which are useful in risk and reliability analysis and general business analysis, can be difficult or impossible to extract without the use of approximations. These examples include uses of the approximation in generating random deviates, uses in mixture models for risk analysis, and an illustrative decision analysis problem. It is our belief that this exploratory look at the triangular approximation to the normal will provoke other practitioners to explore its possible use in various domains and applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.