Abstract

Life codes increase in both number and variety with biological complexity. Although our knowledge of codes is constantly expanding, the evolutionary progression of organic, neural, and cultural codes in response to selection pressure remains poorly understood. Greater clarification of the selective mechanisms is achieved by investigating how major evolutionary transitions reduce spatiotemporal and energetic constraints on transmitting heritable code to offspring. Evolution toward less constrained flows is integral to enduring flow architecture everywhere, in both engineered and natural flow systems. Beginning approximately 4 billion years ago, the most basic level for transmitting genetic material to offspring was initiated by protocell division. Evidence from ribosomes suggests that protocells transmitted comma-free or circular codes, preceding the evolution of standard genetic code. This rudimentary information flow within protocells is likely to have first emerged within the geo-energetic and geospatial constraints of hydrothermal vents. A broad-gauged hypothesis is that major evolutionary transitions overcame such constraints with tri-flow adaptations. The interconnected triple flows incorporated energy-converting, spatiotemporal, and code-based informational dynamics. Such tri-flow adaptations stacked sequence splicing code on top of protein-DNA recognition code in eukaryotes, prefiguring the transition to sexual reproduction. Sex overcame the spatiotemporal-energetic constraints of binary fission with further code stacking. Examples are tubulin code and transcription initiation code in vertebrates. In a later evolutionary transition, language reduced metabolic-spatiotemporal constraints on inheritance by stacking phonetic, phonological, and orthographic codes. In organisms that reproduce sexually, each major evolutionary transition is shown to be a tri-flow adaptation that adds new levels of code-based informational exchange. Evolving biological complexity is also shown to increase the nongenetic transmissibility of code.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.