Abstract

The limited efficacy of immune checkpoint inhibitors (ICIs) in the treatment of advanced Esophageal Squamous Cell Carcinoma (ESCC) poses a challenge. Recent evidence suggests that tumor cells' insensitivity to cytotoxic T lymphocytes (CTLs) contributes to drug resistance against ICIs. Here, a particular tRNA-derived fragment called tRF-3024b has been identified as playing a significant role in tumor cell resistance to CTLs. Through tRF sequencing (tRF-seq), we observed a high expression of tRF-3024b in ESCC cells that survived co-culture with CTLs. Further in vitro studies demonstrated that tRF-3024b reduced the apoptosis of tumor cells when co-cultured with CTLs. The mechanism behind this resistance involves tRF-3024b promoting the expression of B-cell lymphoma-2 (BCL-2) by sequestering miR-192-5p, a microRNA that would normally inhibit BCL-2 expression. This means that tRF-3024b indirectly enhances the protective effects of BCL-2, reducing apoptosis in tumor cells. Rescue assays confirmed that the suppressive function of tRF-3024b relies on BCL-2. In summary, the tRF-3024b/miR-192-5p/BCL-2 axis sheds light on the crucial role of tRF-3024b in regulating BCL-2 expression. These findings offer valuable insights into strategies to enhance the response of ESCC to CTLs and improve the effectiveness of immunotherapy approaches in treating ESCC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call