Abstract

The nearby Sun-like star HD 114174 exhibits a strong and persistent Doppler acceleration indicating the presence of an unseen distant companion. We have acquired high-contrast imaging observations of this star using NIRC2 at Keck and report the direct detection of the body responsible for causing the "trend". HD 114174 B has a projected separation of 692+/-9 mas (18.1 AU) and is 10.75+/-0.12 magnitudes (contrast of 5x10{-5}) fainter than its host in the K-band, requiring aggressive point-spread function subtraction to identify. Our astrometric time baseline of 1.4 years demonstrates physical association through common proper motion. We find that the companion has absolute magnitude, M_J=13.97+/-0.11, and colors, J-K= 0.12+/-0.16 mag. These characteristics are consistent with an ~T3 dwarf, initially leading us to believe that HD 114174 B was a substellar object. However, a dynamical analysis that combines radial velocity measurements with available imaging data indicates a minimum mass of m=0.260+/-0.010Msun. We conclude that HD 114174 B must be a white dwarf. Assuming a hydrogen-rich composition, atmospheric and evolutionary model fits yield an effective temperature Teff = 8160+/-4000 K, surface gravity log g=8.90+/-0.02, and cooling age of t_c=3.4 Gyr, which is consistent with the 4.7+/-2.4 Gyr host star isochronal age estimate. HD 114174 B is a benchmark object located only d=26.1 pc from the Sun. It may be studied at a level of detail comparable to Sirius and Procyon, and used to understand the link between the mass of white dwarf remnants with that of their progenitors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call