Abstract

Staphylococcus aureus of the many staphylococcal species is the most common cause of both skin and soft tissue infection and severe staphylococcal infections including Staphylococcus aureus bacteremia (SAB). Many antibiotics are active against the staphylococci, yet over the last 40 years antibiotic resistance, particularly resistance to beta-lactam antibiotics, has plagued antimicrobial therapy. The term “methicillin resistance” is a historic term and now refers to the ability of staphylococci, in particular methicillin-resistant Staphylococcus aureus (MRSA), to resist the action of beta-lactam antibiotics. This resistance is encoded by the mecA gene carried in a complex genetic cassette, SCC mec. Vancomycin and old antibiotics remain the keystone of treatment for resistant staphylococci. Other newer agents, and some older agents, show good activity against resistant staphylococci which are the focus of this review: trimethoprim-sulfamethoxazole, ceftaroline, daptomycin, fosfomycin, linezolid, dalbavancin, televancin, and omadacycline. Other agents with novel mechanisms of action are under development, for use as single anti-staphylococcal agents or for combination use to augment the action of the primary anti-staphylococcal agent. Vancomycin therapy carries specific risks, particularly renal dysfunction, but despite its foibles, vancomycin remains the standard of care for the treatment of resistant staphylococcal infections. Some clinicians implement an early switch from vancomycin at the earliest signs of renal dysfunction. The near horizon holds promise also of augmentation of both cellular and humoral responses to staphylococcal infection. Pending newer clinical trials that show clear superiority of one anti-staphylococcal agent over another or over vancomycin, it will remain to expert clinical judgment in determining antibiotic choice and duration of anti-staphylococcal therapy.

Highlights

  • Staphylococcus aureus, one of many species of staphylococci, usually causes skin and soft tissue infections (SSTIs) in humans

  • Non-cutaneous and non-soft tissue infections, though severe, are less frequent than SSTIs. Both SSTIs and non-SSTIs may be associated with S. aureus bacteremia (SAB)

  • When SAB occurs without an identifiable origin, clinicians must always rule out S. aureus endocarditis which requires prolonged intravenous (IV) antibiotic therapy

Read more

Summary

26 Feb 2020

F1000 Faculty Reviews are written by members of the prestigious F1000 Faculty. They are commissioned and are peer reviewed before publication to ensure that the final, published version is comprehensive and accessible. The reviewers who approved the final version are listed with their names and affiliations. Any comments on the article can be found at the end of the article

Background
Conclusions
John JF
Findings
Cunha BA
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call