Abstract

The enzyme tissue transglutaminase 2 (TG2) appears to play an important role in several physiological processes such as wound healing, the progression of cancer and of vascular disease. Additionally, TG2 has been proposed as a means of stabilizing collagen extracellular matrix (ECM) scaffolds for tissue engineering applications. In this report, we examined the effect of TG2 treatment on the mechanical properties of the ECM, and associated cell responses. Using a model ECM of fibrillar collagen, we quantitatively examined vascular smooth muscle cell (vSMC) response to untreated, or TG2 treated collagen. We show that cells respond to TG2 treated collagen with increased spreading, an increase in contractile response as indicated by elevated F-actin polymerization and myosin light chain phosphorylation, and increased proliferation, without apparent changes in integrin specificity or matrix topography. Comparative atomic force microscopy loading studies indicate that TG2 treated fibrils are 3 times more resistant to shearing force from an AFM tip than untreated fibrils. The data suggest that TG2 treatment of collagen increases matrix mechanical stiffness, which apparently alters the contractile and proliferative response of vSMC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.