Abstract

We consider traveling salesman problems (TSPs) with a permuted Monge matrix as cost matrix where the associated patching graph has a specially simple structure: a multistar, a multitree or a planar graph. In the case of multistars, we give a complete, concise and simplified presentation of Gaikov's theory. These results are then used for designing an O(m3 + mn) algorithm in the case of multitrees, where n is the number of cities and m is the number of subtours in an optimal assignment. Moreover we show that for planar patching graphs, the problem of finding an optimal subtour patching remains NP-complete.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.