Abstract
This paper analyzes decomposition properties of a graph that, when they occur, permit a polynomial solution of the traveling salesman problem and a description of the traveling salesman polytope by a system of linear equalities and inequalities. The central notion is that of a 3-edge cutset, namely, a set of 3 edges that, when removed, disconnects the graph. Conversely, our approach can be used to construct classes of graphs for which there exists a polynomial algorithm for the traveling salesman problem. The approach is illustrated on two examples, Halin graphs and prismatic graphs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.