Abstract
In this paper, we investigate the instability of one‐dimensionally stable periodic traveling wave solutions of the generalized Korteweg‐de Vries equation to long wavelength transverse perturbations in the generalized Zakharov–Kuznetsov equation in two space dimensions. By deriving appropriate asymptotic expansions of the periodic Evans function, we derive an index which yields sufficient conditions for transverse instabilities to occur. This index is geometric in nature, and applies to any periodic traveling wave profile under some minor smoothness assumptions on the nonlinearity. We also describe the analogous theory for periodic traveling waves of the generalized Benjamin–Bona–Mahony equation to long wavelength transverse perturbations in the gBBM–Zakharov–Kuznetsov equation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.