Abstract

BackgroundPost-spinal anesthesia hypotension during cesarean delivery is caused by decreased systemic vascular resistance due to the blockage of the autonomic nerves, which is further worsened by inferior vena cava (IVC) compression by the gravid uterus. This study aimed to assess whether peak velocity and diameter of the IVC below the xiphoid or right common femoral vein (RCFV) in the inguinal region, as measured on ultrasound, could reflect the degree of IVC compression and further identify parturients at risk of post-spinal hypotension.MethodsFifty-six parturients who underwent elective cesarean section with spinal anesthesia were included in this study; peak velocities and anteroposterior diameters of the IVC and peak velocities and transverse diameters of the RCFV were measured using ultrasound before anesthesia. The primary outcome was the ultrasound measurements of IVC and RCFV acquired before spinal anesthesia and their association with post-spinal hypotension. Hypotension was defined as a drop in systolic arterial pressure by > 20% from the baseline. Multinomial logistic regression analysis was used to identify the association between the measurements of IVC, RCFV, and post-spinal hypotension during cesarean delivery. Receiver operating characteristic curves were used to test the abilities of the identified parameters to predict post-spinal hypotension; the areas under the curve and optimum cut-off values for the predictive parameters were calculated.ResultsA longer transverse diameter of the RCFV was associated with the occurrence of post-spinal hypotension (odds ratio = 2.022, 95% confidence interval [CI] 1.261–3.243). The area under the receiver operating characteristics curve for the prediction of post-spinal hypotension was 0.759 (95% CI 0.628–0.890, P = 0.001). A transverse diameter of > 12.2 mm of the RCFV could predict post-spinal hypotension during cesarean delivery.ConclusionsA longer transverse diameter of RCFV was associated with hypotension and could predict parturients at a major risk of hypotension before anesthesia.Trial registrationThis study was registered at http://www.chictr.org.cn on 16, May, 2018. No. ChiCTR1800016163.

Highlights

  • Post-spinal anesthesia hypotension during cesarean delivery is caused by decreased systemic vascular resistance due to the blockage of the autonomic nerves, which is further worsened by inferior vena cava (IVC) compression by the gravid uterus

  • Post-spinal anesthesia hypotension during cesarean delivery is caused by decreased systemic vascular resistance due to the blockage of the autonomic nerves; the compression of the inferior vena cava (IVC) by the gravid uterus further worsens this hypotension

  • The right common femoral vein (RCFV) is located at the distal part of the aortocaval compressed point; we hypothesized that the peak velocity and diameter of the RCFV would be more significant than the indirect parameters of the IVC below the xiphoid in women at high risk of hypotension during cesarean delivery, following spinal anesthesia

Read more

Summary

Introduction

Post-spinal anesthesia hypotension during cesarean delivery is caused by decreased systemic vascular resistance due to the blockage of the autonomic nerves, which is further worsened by inferior vena cava (IVC) compression by the gravid uterus. Post-spinal anesthesia hypotension during cesarean delivery is caused by decreased systemic vascular resistance due to the blockage of the autonomic nerves; the compression of the inferior vena cava (IVC) by the gravid uterus further worsens this hypotension. The RCFV is located at the distal part of the aortocaval compressed point; we hypothesized that the peak velocity and diameter of the RCFV would be more significant than the indirect parameters of the IVC below the xiphoid in women at high risk of hypotension during cesarean delivery, following spinal anesthesia

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call