Abstract

The transport properties of electrons in graphene p–n junction with uniform Kekulé lattice distortion have been studied using the tight-binding model and the Landauer–Büttiker formalism combined with the nonequilibrium Green’s function method. In the Kekulé-ordered graphene, the original K and Kʹ valleys of the pristine graphene are folded together due to the enlargement of the primitive cell. When the chiral symmetry breaking of a valley leads to a single-valley phase, there are special transport properties of Dirac electrons in the Kekulé lattice. In the O-shaped Kekulé graphene p–n junction, Klein tunneling is suppressed, and only resonance tunneling occurs. In the Y-shaped Kekulé graphene p–n junction, the transport of electrons is dominated by Klein tunneling. When the on-site energy modification is introduced into the Y-shaped Kekulé structure, both Klein tunneling and resonance tunneling occur, and the electron tunneling is enhanced. Under strong magnetic fields, the conductance of O-shaped and on-site energy-modified Y-shaped Kekulé graphene p–n junctions is non-zero due to the presence of resonance tunneling. It is also found that the disorder can enhance conductance, with conductance plateaus forming in the appropriate range of disorder strength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.