Abstract

The sorption and permeation properties of CO2 and CH4 for synthesized brominated polysulfone, BPSf (bromobisphenol A polysulfone) were measured, and compared with the values for PSf (bisphenol A polysulfone), MPSf (bisphenol A methylated polysulfone) and TMSPSf (bisphenol A trimethylsilylated polysulfone) to investigate the structure-property relationships. Especially, the effect of polarity of substituents on the transport properties was studied. The effect of operating pressure on the permeation properties of polysulfones was examined. The permeation properties for a mixture of CO2 and CH4 were also measured, and these results were compared with those obtained from the experiments of pure gases. The sorbed concentrations and permeability coefficients are well fitted to the dual mode model. The permeability coefficients of each gas of a binary mixture are less than those of pure gases, and the extent of reduction in permeability coefficient is larger for less permeable polymer. The ideal separation factor for four polysulfones increases in the following order: TMSPSf< PSf< BPSf< MPSf. The ideal separation factor for BPSf is higher than other polysulfones having similar permeability coefficients of CO2 with BPSf. It can be explained that the strong polarity of bromine in BPSf increases cohesive energy density of polymer, and reduces the chain packing-inhibiting ability. The ranking of permeability coefficient correlates well with fractional free volume. The variation of d-spacing is not consistent with the permeability coefficient.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call