Abstract
Cape Town, renowned for its natural beauty, is troubled by an unpleasant brown haze pollution, in which atmospheric sulfur plays a major role. This study investigates whether Cape Town is a net producer or recipient of anthropogenic sulfur pollution. In the study, two atmospheric chemistry-transport models (RegCM and WRF) are used to simulate atmospheric flow and chemistry transport over South Africa for two years (2001 and 2002). Both models reproduce the observed seasonal variability in the atmospheric flow and SO2 concentration over Cape Town. The models simulations agree on the seasonal pattern of SO2 over South Africa but disagree on that of SO4.The simulations show that ambient sulfur in Cape Town may be linked with pollutant emissions from the Mpumalanga Highveld, South Africa's most industrialized region. While part of atmospheric SO2 from the Highveld is transported at 700 hPa level toward the Indian Ocean (confirming previous studies), part is transported at low level from the Highveld toward Cape Town. In April, a band of high concentration SO2 extends between the Highveld and Cape Town, following the south coast. Extreme sulfur pollution events in Cape Town are associated with weak flow convergence or stagnant conditions over the city, both of which encourage the accumulation of pollution. However the study suggests that atmospheric sulfur is being advected from Mpumalanga Highveld to Cape Town and this may contribute to atmospheric pollution problems in Cape Town.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.