Abstract

In this paper, we studied the transmission properties, including photonic band gap (PBG) and defect mode properties, of one-dimensional photonic crystals (1D PCs) consisting of gradient materials. When keeping the average refractive index of the gradient materials in the 1D gradient-material PCs (1D GPCs) the same as the index of the corresponding normal materials in the 1D normal-material PCs (1D NPCs), by transfer matrix method, we found that the complete 1D GPCs with high-index gradient materials benefit to achieve larger omni-PBG than that in 1D NPCs. In our high-index gradient material case, for TE(TM) wave, the optimal omni-PBGs in 1D GPCs with first- and second-order gradient materials are 38.6% (50.2%) and 15.9% (22.3%) larger than that in 1D NPCs; while for the optimal relative bandwidths of omni-PBG, the corresponding promotions are 41.1% (52.3%) and 16.1% (22.6%), respectively. In addition, when defective 1D GPCs have gradient-material defect, the position of defect modes can be adjusted by selecting proper parameters of the gradient materials. These types of research are useful for designing wide PBG devices and tunable narrow-band filters which have potential application in optical communication.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call