Abstract

sRift Valley fever virus (RVFV) is a zoonotic vector-borne infection and causes a potentially severe disease. Many mammals are susceptible to infection including important livestock species. Although currently confined to Africa and the near-East, this disease causes concern in countries in temperate climates where both hosts and potential vectors are present, such as the Netherlands. Currently, an assessment of the probability of an outbreak occurring in this country is missing. To evaluate the transmission potential of RVFV, a mathematical model was developed and used to determine the initial growth and the Floquet ratio, which are indicators of the probability of an outbreak and of persistence in a periodic changing environment caused by seasonality. We show that several areas of the Netherlands have a high transmission potential and risk of persistence of the infection. Counter-intuitively, these are the sparsely populated livestock areas, due to the high vector-host ratios in these areas. Culex pipiens s.l. is found to be the main driver of the spread and persistence, because it is by far the most abundant mosquito. Our investigation underscores the importance to determine the vector competence of this mosquito species for RVFV and its host preference.

Highlights

  • Rift Valley fever virus (RVFV; Bunyaviridae: Phlebovirus) was first isolated during an outbreak in the 1930’s in the Rift Valley of Kenya [1]

  • In 1977 the first documented outbreak north of the Sahara occurred in Egypt, and since that time RVFV has been found in Madagascar and smaller islands of the coast of mainland Africa [2]

  • Risk maps The map for risk of persistence of RVFV in the Netherlands (Figure 3) shows that the areas with high host abundance (Figure 2) have the lowest risk of a persistent RVFV infection, due to the low vector-host ratio

Read more

Summary

Introduction

Rift Valley fever virus (RVFV; Bunyaviridae: Phlebovirus) was first isolated during an outbreak in the 1930’s in the Rift Valley of Kenya [1]. Between 1930 and 1977 outbreaks of RVF were limited to sub-Saharan Africa [2]. In 1977 the first documented outbreak north of the Sahara occurred in Egypt, and since that time RVFV has been found in Madagascar and smaller islands of the coast of mainland Africa [2]. In 2000 the first outbreak occurred outside Africa on the Arabian Peninsula in Saudi Arabia and Yemen [3]. The increasing known area of distribution and an outbreak out of Africa feeds the fear of an expansion of the area affected by RVF and especially into the direction of the Middle East and Europe [2]. Many mammalian species are susceptible to infection with RVFV, including livestock such as cattle, goat, sheep and camels [1,4], and wildlife such as giraffe and African buffalo [5,6].

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call