Abstract
The secure operation of electric power transmission lines is essential for the economy and society. However, external factors such as plastic film and kites can cause damage to the lines, potentially leading to power outages. Traditional detection methods are inefficient, and the accuracy of automated systems is limited in complex background environments. This paper introduces a Weighted Spatial Attention (WSA) network model to address the low accuracy in identifying extraneous materials within electrical transmission infrastructure due to background texture occlusion. Initially, in the model preprocessing stage, color space conversion, image enhancement, and improved Large Selective Kernel Network (LSKNet) technology are utilized to enhance the model's proficiency in detecting foreign objects in intricate surroundings. Subsequently, in the feature extraction stage, the model adopts the dynamic sparse BiLevel Spatial Attention Module (BSAM) structure proposed in this paper to accurately capture and identify the characteristic information of foreign objects in power lines. In the feature pyramid stage, by replacing the feature pyramid network structure and allocating reasonable weights to the Bidirectional Feature Pyramid Network (BiFPN), the feature fusion results are optimized, ensuring that the semantic information of foreign objects in the power line output by the network is effectively identified and processed. The experimental outcomes reveal that the test recognition accuracy of the proposed WSA model on the PL (power line) dataset has improved by three percentage points compared to that of the YOLOv8 model, reaching 97.6%. This enhancement demonstrates the WSA model's superior capability in detecting foreign objects on power lines, even in complex environmental backgrounds. The integration of advanced image preprocessing techniques, the dynamic sparse BSAM structure, and the BiFPN has proven effective in improving detection accuracy and has the potential to transform the approach to monitoring and maintaining power transmission infrastructure.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.