Abstract
Pathological collapsibility of the upper airways, caused by many different genetic and environmental insults, is known as tracheomalacia in humans. We determined that Tmem16a, a member of an evolutionarily conserved family of predicted transmembrane proteins, is expressed in the developing trachea. We report that all mice homozygous for a null allele of Tmem16a died within one month of birth and exhibited severe tracheomalacia with gaps in the tracheal cartilage rings along the entire length of the trachea. In addition, the development of the trachealis muscle that spans the dorsal aspect of the trachea was abnormal in Tmem16a mutants. Since the chondrogenic mesenchyme does not express Tmem16a at any time, we propose that the cartilage ring defect observed in Tmem16a mutants is secondary to an expansion of the embryonic trachea that might result from improper stratification of the embryonic tracheal epithelium or the abnormal trachealis muscle. Our data identify Tmem16a as a novel regulator of epithelial and smooth muscle cell organization in murine development. This mutant, the first knockout of a vertebrate TMEM16 family member, provides a mouse model of tracheomalacia.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.