Abstract

In the vascular wilt pathogen Fusarium oxysporum, the mitogen-activated protein kinase (MAPK) Fmk1 is essential for plant infection. The mucin-like membrane protein Msb2 regulates a subset of Fmk1-dependent functions. Here, we examined the role of the tetraspan transmembrane protein Sho1 as an additional regulator of the Fmk1 pathway and determined its genetic interaction with Msb2. Targeted Δsho1 mutants were generated in wild-type and Δmsb2 backgrounds to test possible interactions between the two genes. The mutants were examined for hyphal growth under different stress conditions, phosphorylation of the MAPK Fmk1 and an array of Fmk1-dependent virulence functions. Similar to Msb2, Sho1 was required for the activation of Fmk1 phosphorylation, as well as Fmk1-dependent gene expression and invasive growth functions, including extracellular pectinolytic activity, cellophane penetration, plant tissue colonization and virulence on tomato plants. Δsho1 mutants were hypersensitive to the cell wall-perturbing compound Calcofluor White, and this phenotype was exacerbated in the Δmsb2 Δsho1 double mutant. These results highlight that Sho1 and Msb2 have partially overlapping functions upstream of the Fmk1 MAPK cascade, to promote invasive growth and plant infection, as well as cell wall integrity, in F. oxysporum.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.