Abstract
Accessory beta-subunits modulate the pharmacology of ion channel blockers. The aim was to investigate differences in effects of the antiarrhythmic agent and open-channel blocker tedisamil on transient outward current I(to) (Kv4.3) when coexpressed with beta-subunits potassium voltage-gated channel, Isk-related family, member 1 (KCNE1), potassium voltage-gated channel, Isk-related family, member 2 (KCNE2), or dipeptidyl-aminopeptidase-like protein 6 (DPP6) which modulate I(to) kinetics. Tedisamil inhibited I(to) with IC(50) values of 16 microM for Kv4.3+KChIP2, 11 microM in the presence of KCNE1, and 14 microM for KCNE2. Values were higher in the presence of DPP6 or DPP6+KCNE2 (35 and 26 microM). K(d) values of tedisamil binding and rate constants were not affected by KCNE or DPP6. I(to) kinetics were accelerated by KCNE and DPP6, inactivation to a larger extent with DPP6. Tedisamil did not affect activation time course but apparently accelerated inactivation in all channel subunit combinations tested. Deletion of the intracellular domain of KCNE2 or DPP6 resulted in slowing of kinetics and increased tedisamil sensitivity (IC(50) 4 and 7 microM). It is concluded that apparent effects of DPP6 and deletion mutants (KCNE2 and DPP6) are due to the acceleration or slowing effects of the beta-subunits on I(to) kinetics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.