Abstract
Eukaryotic translation initiation factor 4E (eIF-4E), which possesses cap-binding activity, functions in the recruitment of mRNA to polysomes as part of a three-subunit complex, eIF-4F (cap-binding complex). eIF-4E is the least abundant of all translation initiation factors and a target of growth regulatory pathways. Recently, two human cDNAs encoding novel eIF-4E-binding proteins (4E-BPs) which function as repressors of cap-dependent translation have been cloned. Their interaction with eIF-4E is negatively regulated by phosphorylation in response to cell treatment with insulin or growth factors. The present study aimed to characterize the molecular interactions between eIF-4E and the other subunits of eIF-4F and to similarly characterize the molecular interactions between eIF-4E and the 4E-BPs. A 49-amino-acid region of eIF-4 gamma, located in the N-terminal side of the site of cleavage by Picornaviridae protease 2A, was found to be sufficient for interacting with eIF-4E. Analysis of deletion mutants in this region led to the identification of a 12-amino-acid sequence conserved between mammals and Saccharomyces cerevisiae that is critical for the interaction with eIF-4E. A similar motif is found in the amino acid sequence of the 4E-BPs, and point mutations in this motif abolish the interaction with eIF-4E. These results shed light on the mechanisms of eIF-4F assembly and on the translational regulation by insulin and growth factors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.