Abstract

IntroductionAlzheimer's disease (AD) is characterized by the accumulation of β-amyloid (Aβ) associated with brain atrophy and cognitive decline. The functional form to model the association between Aβ and regional brain atrophy has not been well defined. To determine the relationship between Aβ and atrophy, we compared the performance of the usual dichotomization of cerebrospinal fluid (CSF) Aβ to identify subjects as Aβ+ and Aβ− with a trilinear spline model of CSF Aβ. MethodsOne hundred and eighty-three subjects with mild cognitive impairment and 108 cognitively normal controls with baseline CSF Aβ and up to 4 years of longitudinal magnetic resonance imaging data from the Alzheimer's Disease Neuroimaging Initiative were analyzed using mixed-effects regression. Piecewise-linear splines were used to evaluate the nonlinear nature of the association between CSF Aβ and regional atrophy and to identify points of acceleration of atrophy with respect to Aβ. Several parameterizations of CSF Aβ were compared using likelihood ratio tests and the Akaike information criterion. Periods of acceleration of atrophy in which subjects transition from CSF Aβ negativity to CSF Aβ positivity were estimated from the spline models and tested for significance. ResultsSpline models resulted in better fits for many temporal and parietal regions compared with the dichotomous models. The trilinear model showed that periods of acceleration of atrophy varied greatly by region with early changes seen in the insula, amygdala, precuneus, hippocampus, and other temporal regions, occurring before the clinical threshold for CSF Aβ positivity. DiscussionThe use of piecewise-linear splines provides an improved model of the nonlinear association between CSF Aβ and regional atrophy in regions implicated in the progression of AD. The important biological finding of this work is that some brain regions show periods of accelerated volume loss well before the CSF Aβ42 threshold. This implies that signs of brain atrophy develop before the current conventional definition of “preclinical AD”.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.