Abstract

Turbulent fluidized bed proves effective in industrial processes due to superior heat and mass transfer and chemical reaction performance. However, understanding the transition to turbulent fluidization remains limited, especially at temperatures exceeding 1000 °C, making it challenging to develop high-temperature fluidized bed applications. This paper presents an experimental investigation on the turbulent fluidization onset velocity (Uc), measured in a 30 mm diameter bed using corundum particles with average diameters from 0.68 mm to 1.58 mm in temperatures from ambient to 1600 °C. Experimental results reveal that Uc increases with temperature up to 600 °C, stabilizes within the 600–1200 °C range, and then decreases above 1200 °C, demonstrating the varying relative significance of hydrodynamic and interparticle forces at different temperatures. To help design and operate high-temperature applications of turbulent fluidization, we developed Uc correlations based on experimental data from both literature sources and this study, covering temperatures of up to 1600 °C and particles of Groups A to D.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.