Abstract

In this study, we investigate the transition of semidiurnal Kelvin waves into Hybrid Kelvin-Edge (HKE) waves and associated generation of internal tides at widening shelves using theory, a realistic global baroclinic ocean model simulation, and quasi-realistic regional barotropic model simulations. Using the global model simulation, we identify several areas where a tidal HKE wave transition co-exists with internal wave generation. Of all areas considered, the Celtic Sea/Bay of Biscay shelf has the widest shelf and the strongest internal tide generation. We find that the global simulation agrees better with the theoretical Kelvin modes on the narrow than with the hybrid edge modes on the wide shelves. To help us understand the effect of complex, realistic bathymetry on the HKE wave transition, we perform quasi-realistic 1/25° barotropic simulations of the Celtic Sea/Bay of Biscay shelf areas. In these simulations, we gradually change the realistic bathymetry to a more idealized bathymetry. The idealized simulations show that the complex bathymetry steers the barotropic energy flux and causes standing wave patterns, which mask the HKE wave transition. Based on this analysis, we conclude that the HKE wave transition in the Celtic Sea/Bay of Biscay and other shelf areas in the global ocean is most likely masked by the effects of complex bathymetry and that offshelf baroclinic fluxes cannot be exclusively attributed to the HKE wave transition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.