Abstract

The stability of two-dimensional thermal convection in an infinite-Prandtl-number fluid layer with zero-stress boundaries is investigated using numerical calculations in three-dimensional rectangles. At low Rayleigh numbers (Ra< 20000) calculations of the stability of two-dimensional rolls to cross-roll disturbances are in agreement with the predictions of Bolton & Busse for a fluid with a large but finite Prandtl number. Within the range 2 × 104<Ra[les ] 5 × 105, steady rolls with basic wavenumber α > 2.22 (aspect ratio < 1.41) are stable solutions. Two-dimensional rolls with basic wavenumber α < 1.96 (aspect ratio > 1.6) are time dependent forRa> 4 × 104. For every case in which the initial condition was a time-dependent large-aspect-ratio roll, two-dimensional convection was found to be unstable to three-dimensional convection. Time-dependent rolls are replaced by either bimodal or knot convection in cases where the horizontal dimensions of the rectangular box are less than twice the depth. The bimodal planforms are steady states forRa[les ] 105, but one case atRa= 5 × 105exhibits time dependence in the form of pulsating knots. Calculations atRa= 105in larger domains resulted in fully three-dimensional cellular planforms. A steady-state square planform was obtained in a 2.4 × 2.4 × 1 rectangular box. started from random initial conditions. Calculations in a 3 × 3 × 1 box produced steady hexagonal cells when started from random initial conditions, and a rectangular planform when started from a two-dimensional roll. An hexagonal planform started in a 3.5 × 3.5 × 1 box atRa= 105exhibited oscillatory time dependence, including boundary-layer instabilities and pulsating plumes. Thus, the stable planform in three-dimensional convection is sensitive to the size of the rectangular domain and the initial conditions. The sensitivity of heat transfer to planform variations is less than 10%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.