Abstract
The origin of living dynamics required a local evasion of thermodynamic degradation by maintaining critical dynamical and structural constraints. Scenarios for life`s origin that fail to distinguish between constrained chemistry and regulated metabolism do not address the question of how living processes first emerge from simpler constraints on molecular interactions. We describe a molecular model system consisting of coupled reciprocal catalysis and self-assembly in which one of the catalytic bi-products tends to spontaneously self-assemble into a containing shell (analogous to a viral capsule). In this process, which we call autogenesis, self-repair/reconstitution and reproduction are made possible by the fact that each of these linked self-organizing processes generates boundary constraints that promote and limit the other, and because this synergy thereby becomes embodied as a persistent rate-independent substrate-transferrable constraint on the synergy of its component constraint-generating processes. It is proposed that this higher-order formal constraint is necessary and sufficient to constitute regulation as opposed to mere physico-chemical constraint. Two minor elaborations of this model system demonstrate how cybernetic and template-based regulation could emerge from this basic process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.