Abstract
Triaxial compression experiments were conducted to investigate the inelastic and failure behavior of six sandstones with porosities ranging from 15% to 35%. A broad range of effective pressures was used so that the transition in failure mode from brittle faulting to cataclastic flow could be observed. In the brittle faulting regime, shear‐induced dilation initiates in the prepeak stage at a stress level C' which increases with effective mean stress. Under elevated effective pressures, a sample fails by cataclastic flow. Strain hardening and shear‐enhanced compaction initiates at a stress level C* which decreases with increasing effective mean stress. The critical stresses C' and C* were marked by surges in acoustic emission. In the stress space, C* maps out an approximately elliptical yield envelope, in accordance with the critical state and cap models. Using plasticity theory, the flow rule associated with this yield envelope was used to predict porosity changes which are comparable to experimental data. In the brittle faulting regime the associated flow rule predicts dilatancy to increase with decreasing effective pressure in qualitative agreement with the experimental observations. The data were also compared with prediction of a nonassociative model on the onset of shear localization. Experimental data suggest that a quantitative measure of brittleness is provided by the grain crushing pressure (which decreases with increasing porosity and grain size). Geologic data on tectonic faulting in siliciclastic formations (of different porosity and grain size) are consistent with the laboratory observations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.