Abstract
BackgroundThe dense structure of cellulose lowers its reactivity and hinders its applications. Concentrated sulfuric acid is an ideal solvent to dissolve cellulose and thus has been used widely to treat cellulose. However, the changes of cellulose after reaction with concentrated sulfuric acid at near-limit S/L ratio and its effect on enzymatic saccharification still need further investigation.ResultsIn this study, the interactions between cellulose (Avicel) and 72% sulfuric acid at very low acid loading conditions of 1:2 to 1:3 (S/L ratio) were studied for the enhanced production of glucose. The Avicel gradually transformed from cellulose I structure to cellulose II structure during the sulfuric acid treatment. Other physicochemical characteristics of Avicel also changed dramatically, such as the degree of polymerization, particle size, crystallinity index, and surface morphology. After acid treatment, both the yield and productivity of glucose from cellulose increased significantly under a very low enzyme loading of 5 FPU/g-cellulose. The glucose yields for raw cellulose and acid-treated (30 min) were 57% and 85%, respectively.ConclusionLow loadings of concentrated sulfuric acid were proven to be effective to break the recalcitrance of cellulose for enzymatic saccharification. A positive correlation between cellulose CrI and glucose yield was found for concentrated sulfuric acid-treated cellulose, which was opposite to previous reports. Cellulose II content was found to be an important factor that affects the conversion of cellulose to glucose.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.