Abstract

The transformation of carbides with austenization time of a high speed steel (HSS) roll material, manufactured by a centrifugal casting method, has been studied. The correlation between wear resistance and the type, morphology, volume fraction, and distribution of the carbides has also been investigated. Microstructural observations, X-ray diffraction (XRD) analysis, hardness measurements, and energy dispersive spectroscopy (EDS) have been used to characterize the carbides. The type and volume fraction of carbides were found to change with austenizing time. During austenization, the transformation of the M3C carbides can be postulated as M3C + γ-Fe → M2C, with much finer nodular and rodlike MC carbides also forming through a solid-state transformation. The M2C carbide decomposes as M2C + γ-Fe → MC + M7C3 + M6C. The decomposed carbide substantially maintains a platelike shape until the end of decomposition. The most important finding of this study is that austenization results in changes in the type, morphology, volume fraction, and distribution of carbides and that it can be controlled to produced a homogeneous distribution of hard carbides, resulting in an improvement in the wear resistance of HSS rolls. This finding may be of great use for the industrial production of HSS rolls.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.