Abstract

The transformation of acicular γ Fe 2O 3 particles to α Fe 2O 3 has been monitored using magnetic properties as a proxy for γ Fe 2O 3 concentration during the inversion process. The transformation is thermally activated, the height of the barrier opposing inversion being 3.7 eV at atmospheric pressure and 0.5 eV at a pressure of about 100 MPa. The barrier arises from the combination of a term representing the reduction in lattice energy in an inverted region, and the strain energy associated with the interface between the inverted and non-inverted phases. The sensitivity of the inversion process to pressure can be understood in terms of the dependence of these energy terms, and the energy barrier, on interatomic spacing. Extrapolation of these laboratory data to the conditions of the submarine crust at Site 504B of the Deep Sea Drilling Project is consistent with the inferred magnetic mineralogy of the recovered material.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.