Abstract

The transfer matrix method is a simple but powerful analytical tool used to model acoustic wave propagation in a wide range of one-dimensional problems. In this chapter, we present the method and summarize the most common building blocks encountered in one-dimensional acoustic systems. These include layers of fluids and porous media, ducts and waveguides of different geometries where thermoviscous losses can be accounted for, locally reacting elements such as Helmholtz or quarter-wavelength resonators, viscoelastic plates and membranes, micro-perforated panels or vibrating walls. Several examples are provided, including a multi-layered porous structure for room acoustics, the transmission problem of a double-leaf wall for building acoustics, and the analysis of the dispersion relations of acoustic waves in periodic media and metamaterials using locally resonant elements. Various one-dimensional wave-motion phenomena can be studied using the generalized framework provided by the transfer matrix method such as reflection, transmission, absorption, attenuation and dispersion, as illustrated in the examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.