Abstract

Hypoxia is a prominent feature in rheumatoid arthritis (RA) synovium. However, its contribution to the pathogenesis of RA remains unclear. We undertook this study to systematically characterize the changes in gene expression induced by hypoxia in synovial fibroblasts. We used microarray expression profiling in paired normoxic and hypoxic cultures of healthy synovial fibroblasts (HSFs) and RA synovial fibroblasts (RASFs). We used Student's paired t-test with Benjamini and Hochberg multiple testing correction to determine statistical significance. Validation of microarray data was performed by quantitative real-time reverse transcription-polymerase chain reaction analysis of selected genes. Biologic pathways differentially modulated by hypoxia in RASFs or HSFs were identified using unsupervised Ingenuity Pathways Analysis. Hypoxia induced significant changes in the expression of a large group of genes in both HSFs and RASFs. In RASFs, we observed a lower number of hypoxia-regulated genes and partial differences in their functional categories. The number of differentially expressed genes in RASFs compared with HSFs was significantly increased by hypoxia. Multiple gene sets involved in energy metabolism, intracellular signal transduction, angiogenesis, and immune and inflammatory pathways were significantly modified, the last in both proinflammatory and antiinflammatory directions. These data demonstrate that hypoxia induces significant changes in gene expression in HSFs and RASFs and identify differences between RASF and HSF profiles. The hypoxia-induced gene expression program in synovial fibroblasts identifies new factors and pathways relevant to understanding their contribution to the pathogenesis of chronic arthritis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.