Abstract

The Myc-Max-Mad/Mnt network of transcription factors has been implicated in oncogenesis and the regulation of proliferation in vertebrate cells. The identification of Myc and Max homologs in Drosophila melanogaster has demonstrated a critical role for dMyc in cell growth control. In this report, we identify and characterize the third member of this network, dMnt, the sole fly homolog of the mammalian Mnt and Mad family of transcriptional repressors. dMnt possesses two regions characteristic of Mad and Mnt proteins: a basic helix-loop-helix-zipper domain, through which it dimerizes with dMax to form a sequence-specific DNA binding complex, and a Sin-interacting domain, which mediates interaction with the dSin3 corepressor. Using the upstream activation sequence/GAL4 system, we show that expression of dMnt results in an inhibition of cellular growth and proliferation. Furthermore, we have generated a dMnt null allele, which results in flies with larger cells, increased weight, and decreased life span compared to wild-type flies. Our results demonstrate that dMnt is a transcriptional repressor that regulates D. melanogaster body size.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.