Abstract
Aspergillus fumigatus is the leading cause of invasive aspergillosis, which in immunocompromised patients results in a mortality rate as high as 90%. Earlier studies showed that HbxA is a global regulator in Aspergillus flavus affecting morphological development and secondary metabolism. Here, we determined its role in A. fumigatus, examining whether HbxA influences the regulation of asexual development, natural product biosynthesis, and virulence of this fungus. Our analysis demonstrated that removal of the hbxA gene caused a near-complete loss of conidial production in the mutant strain, as well as a slight reduction in colony growth. Other aspects of asexual development are affected, such as size and germination of conidia. Furthermore, we showed that in A. fumigatus, the loss of hbxA decreased the expression of the brlA central regulatory pathway involved in asexual development, as well as the expression of the "fluffy" genes flbB, flbD, and fluG HbxA was also found to regulate secondary metabolism, affecting the biosynthesis of multiple natural products, including fumigaclavines, fumiquinazolines, and chaetominine. In addition, using a neutropenic mouse infection model, hbxA was found to negatively impact the virulence of A. fumigatusIMPORTANCE The number of immunodepressed individuals is increasing, mainly due to the greater life expectancy in immunodepressed patients due to improvements in modern medical treatments. However, this population group is highly susceptible to invasive aspergillosis. This devastating illness, mainly caused by the fungus Aspergillus fumigatus, is associated with mortality rates reaching 90%. Treatment options for this disease are currently limited, and a better understanding of A. fumigatus genetic regulatory mechanisms is paramount for the design of new strategies to prevent or combat this infection. Our work provides new insight into the regulation of the development, metabolism, and virulence of this important opportunistic pathogen. The transcriptional regulatory gene hbxA has a profound effect on A. fumigatus biology, governing multiple aspects of conidial development. This is relevant since conidia are the main source of inoculum in Aspergillus infections. Importantly, hbxA also regulates the biosynthesis of secondary metabolites and the pathogenicity of this fungus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.