Abstract

The zebrafish pronephric tubule consists of proximal and distal segments and a collecting duct. The proximal segment is subdivided into the neck, proximal convoluted tubule (PCT) and proximal straight tubule (PST) segments. The distal segment consists of the distal-early (DE) and distal-late (DL) segments. How the proximal and distal segments develop along the anteroposterior axis is poorly understood. Here we show that knockdown of taz in zebrafish caused shortening and a significant reduction in the number of principal cells of the PST-DE segment, and proximalization of the pronephric tubule in 24hpf embryos. RA treatment expanded the pronephric proximal domain in normal embryos as in taz morphants, an effect that was further enhanced upon exposure of taz morphants to RA. The early pronephric defects in 24hpf taz morphants led to the failure of anterior pronephric tubule migration and convolution, and to PCT dilation and cyst formation in older embryos. In situ hybridization showed weak and transient expression of taz at the bud stage in the intermediate mesoderm, the source of pronephric progenitors. The present findings show that Taz is required in the anteroposterior patterning of the pronephric progenitor domain in the intermediate mesoderm, acting in part by regulating RA signaling in the pronephric progenitor field in the intermediate mesoderm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call