Abstract
Accumulation of unfolded proteins in the endoplasmic reticulum (ER) activates signaling pathways to induce transcription of a number of genes encoding ER protein chaperones and-folding catalysts. In Saccharomyces cerevisiae this transcriptional induction is mediated by an increase in the synthesis of the transcription factor Hac1p. The transmembrane receptor Ire1p/Ern1p containing a Ser/Thr protein kinase and endoribonuclease activity transmits the unfolded protein response (UPR) from the ER to the nucleus. Activation of Ire1p kinase induces its endoribonuclease activity to cleave unspliced HAC1 mRNA and generate exon fragments that are subsequently ligated by tRNA ligase (RLG1). Whereas unspliced HAC1 mRNA is poorly translated, spliced HAC1 mRNA is efficiently translated. Subunits of the yeast transcriptional co-activator complex SAGA also play a role in the UPR. Deletion of GCN5, ADA2, or ADA3 reduces, and deletion of ADA5 completely abolishes, the UPR. Although HAC1 mRNA requires only Ire1p and Rlg1p in vitro, we demonstrate that ADA5 is required for the IRE1/RLG1-dependent splicing reaction of HAC1 mRNA in vivo. In addition, Ada5p interacts with Ire1p. These results suggest that subcomponents of transcriptional co-activator complexes may be involved in RNA processing events.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.