Abstract
Storage of meristematic tissue at ultra-low temperatures offers a mean to maintain valuable genetic resources from vegetatively reproduced plants. To reveal the biology underlying cryo-stress, shoot tips of the model plant Arabidopsis thaliana were subjected to a standard preservation procedure. A transcriptomic approach was taken to describe the subsequent cellular events which occurred. The cryoprotectant treatment induced the changes in the transcript levels of genes associated with RNA processing and primary metabolism. Explants of a mutant lacking a functional copy of the transcription factor WRKY22 were compromised for recovery. A number of putative downstream targets of WRKY22 were identified, some related to phytohormone-mediated defense, to the osmotic stress response, and to development. There were also alterations in the abundance of transcript produced by genes encoding photosynthesis-related proteins. The wrky22 mutant plants developed an open stomata phenotype in response to their exposure to the cryoprotectant solution. WRKY22 probably regulates a transcriptional network during cryo-stress, linking the explant’s defense and osmotic stress responses to changes in its primary metabolism. A model is proposed linking WRKY53 and WRKY70 downstream of the action of WRKY22.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.