Abstract

In recent years, it has been accepted that oxidative stress is critically involved in the etiopathology of Parkinson's disease (PD) and as a result new therapeutic targets for reduction of oxidant injury and neuroprotection can be defined. Here we discuss the potential use of the transcription factor nuclear factor erythroid-2-related factor 2 (Nrf2), as a pharmacological target for neuroprotective therapy in PD. Data generated by various groups indicate that Nrf2 induces the expression of a group of cytoprotective, antixenobiotic and antioxidant enzymes that include heme oxygenase-1, NAD(P)H:quinone oxidoreductase and enzymes of glutathione (GSH) metabolism such as γ-glutamyl cysteine ligase, GSH transferases and so on. Two strategies are known to increase Nrf2 transcriptional activity in PD: i) use of certain catechol-derived quinones for selective inhibition of the Nrf2 repressor Kelch-like ECH-associated protein to increase of Nrf2 protein levels; and ii) use of glycogen synthase kinase 3β inhibitors to maintain high protein and activity levels of Nrf2 in the nucleus. This review provides a rationale for drug design of appropriate molecules that might endorse a neuroprotective strategy to PD on the basis of attenuation of oxidative stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.